Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.
نویسندگان
چکیده
We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.
منابع مشابه
Structural characterization of non-polar (112 0) and semi-polar (1126) GaN films grown on r-plane sapphire
Thick GaN films, with (1120) or (1126) planes parallel to the r-plane of sapphire, were grown by molecular beam epitaxy using AlN or GaN buffer layers. Characterization by transmission electron microscopy revealed a high density of basal-plane stacking faults (BSFs) in the (1120) non-polar GaN (a-GaN) films. {1120} and {1010} prismatic-plane and {1102} pyramidal-plane stacking faults (SFs) doma...
متن کاملNitrogen-Polar (0001¯) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer
We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the Ga...
متن کاملA study of semi-insulating GaN grown on AlN buffer/sapphire substrate by metalorganic chemical vapor deposition
We report the remarkably improved crystal quality of semi-insulating GaN grown by metalorganic chemical vapor deposition on an AlN buffer layer, which is deposited on sapphire substrate. The electrical and structural properties are characterized by dark current–voltage transmission line model and X-ray diffraction measurements. It is found that the crystal quality of the GaN epilayer is strongl...
متن کاملStructural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer
AlxGa1−xN/GaN x 0.3 heterostructures with and without a high-temperature HT AlN interlayer IL have been grown on sapphire Al2O3 substrates and AlN buffer/Al2O3 templates by metal organic chemical vapor deposition. The effects of an AlN buffer layer BL grown on an Al2O3 substrate and an AlN IL grown under the AlGaN ternary layer TL on structural, morphological, and optical properties of the hete...
متن کاملLow defect large area semi-polar (112) GaN grown on patterned (113) silicon
We report on the growth of semi-polar GaN (112̄2) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited. Total thicknesses up to 5 m were realised without cracks in the layer. Transmission electron mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016